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Abstract – Transmission of the electric power is accompanied 

with generation of low – frequency electromagnetic fields. 

Electromagnetic compatibility studies require that the fields from 

sources of electric power be well known. Unfortunately, many of 

these sources are not defined to the desired degree of accuracy. 

This applies e.g. to the case of the twisted-wire pair used in 

telephone communication; already practiced is twisting of 

insulated high-voltage three phase power cables and single-phase 

distribution cables as well. 

The paper presents a theoretical study of the calculation of 

magnetic fields in vicinity of conductors having helical structure. 

For the helical conductor with finite length the method is based 

on the Biot-Savart law. Since the lay-out of the cables is much 

more similar to a broken line than to strait line, in the paper the 

magnetic flux densities produced by helical conductor of complex 

geometry are also derived. 

The analytical formulas for calculating the 3D magnetic field 

can be used by a software tool to model the magnetic fields 

generated by e.g. twisted wires, helical coils, etc.  

I. MAGNETIC FIELD CALCULATION 

An analytical method for calculating the low-frequency 

magnetic field of an infinitely long helical line current using 

the magnetic vector potential has been derived in the 

pioneering work [1] and the problem has afterwards been 
revisited in [2] – [6], [8]. 

The realistic model of twisted cables should be however 

based on the theory of a helical line current of finite length 

instead on the theory of infinitely long one. Moreover, the lay-

out of the cables is much more similar to a broken line than to 

strait line. In the paper the magnetic flux density produced by 

finite length helical conductor of complex geometry is 

derived. It is assumed, that the currents induced in the earth 

can be neglected, so the magnetic field can be obtained using 

the Biot-Savart law: 
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where I  is a phasor current, the vector element dl  coincides 

with the direction of the current I,  r1   is a unit vector in the 

direction of the vector r , r is the distance between the source 
point and the observation point and µ0  is the magnetic 

permeability of the vacuum. 

  The analytical formulas for calculating the 3D magnetic 

field with respect to a convenient and unique reference system 

are derived. For calculation purposes, the helix route is 

divided into straight segments. For simplicity consider only 

the i-th segment of the helix. It is convenient to define two 
different Cartesian reference systems: the first one x,y,z is a 

reference system (external reference system), the second one 

x´,y´,z´ is referred to the i-th segment, Fig. 1. It should be 

noted, that the reference coordinate system (unprimed) can be 

arbitrary located in the space. 
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Fig.1. Reference systems and the i-th segment of the helix 

 

The point of origin of the primed coordinate system 0’ 

(outset of the helix axis) have in the external (unprimed) 
reference system the coordinates (xi,yi,zi), whereas the end 

point of the i-th segment axis has the coordinates 

(xi+1,yi+1,zi+1), respectively. 

The parametric equations of the helical line with respect to 

the parameter φ ( hLi /20 πϕ ≤≤ ) indicated on Fig.1 and 

with 00 =ϕ  are: 
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where a is the helix radius, h means the helix pitch, Li  is the 
length of the i-th helix segment. 

To obtain the eqn.(2) in the reference coordinates system, 

the roto-translation formulas in the tridimensional space 

should be applied. Thus: 
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where generally: γβα ,,  are the direction cosines of the 

rotated X
’-, Y’- and Z

’-axis relative to the original X-, Y-, Z-
axes, respectively, and 

3,2,1, ==++ mllmmlmlml δγγββαα    (4) 

where δlm is the Kronecker delta. 

In order to apply the Biot-Savart formula (1), we have to 

find suitable expressions )(1 ϕri and )(ϕidl . By looking at 

Fig.1, if )(ϕX , )(ϕY , )(ϕZ  are the coordinates of the generic 
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element )(ϕidl and zyx 1,1,1  are rectangular unit vectors, we 

can obtain the three components of the magnetic flux density. 
For example, the x-component of B is in the form: 
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where with k = h/2π   e.g.: 
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The integrals describing the magnetic flux density 

components have to be solved numerically. 

The total magnetic field of the helical conductor with 

complex geometry can be obtained by superposition of the 

contributions produced by each segment.  

It should be noted, that the formulas derived enables one to 

analyze magnetic fields produced by twisted-wire pair as well 

as by three-core cable considering the conductor twist. The 

twisted-pair cable can be represented mathematically as a 

double helix that consists of two helices having the same 

radius and pitch and carrying currents I  and – I ; the helices 

are located 180 spatial degrees from each other. In the three-

wire helix structure the current in the i-th conductor 

( 3,2,1=i ) is )sin(2 ii tIi ψω +=  and the current phase 

angel 3/2)1( πψ −= ii . The location of conductors in 

the 0=z  plane is fixed by angles i0ϕ , where 

3/2)1(0 πϕ −= ii . The total field components are found by 

summation. 

II. EXAMPLE OF CALCULATIONS 

In order to verify the correctness of the analytical 

calculations presented in the paper, comparison has been made 

with an analytical solution in form of infinite series containing 

Bessel functions obtained in [5] for infinitely long helical  

conductor. Fig.2 shows the Bφ component of the magnetic flux 
density along the axial direction at radial distance from helix 

axis r = 1 cm. The calculations have been curried out in 

central part of the helix for different helix length ranging from 

1 m to 100 m, , and refer to I = 1 A,  a = 1 mm, h = 2 cm and 

00 =ϕ . 

It follows from the calculations, that independent of helix 

length the agreement was excellent, for field components 
except of the Bφ, what is evident from physical point of view. 

Discrepancy between the results obtained by the use of the 

method appropriate for the infinitely long helical conductor 

and by use of the method for conductor finite in the length 

shows that for short helical conductors the proposed method 

shall be applied. 

 
Fig.2. Bφ component versus z  

III. FINAL REMARKS 

The design of installation generating low-frequency 

magnetic field requires access to effective analytical and 

computational tools. The paper presents procedures of 

determining the magnetic flux densities intensities produced 
by currents in helical conductors with finite length basing on 

the Biot-Savart law. The analytical formulas for calculating 

the 3D magnetic field are derived and  allow also managing 

cases with any complex geometry of the helical conductor 

such as changes of direction of a conductor line, changes of 

burial depth / height of the line and cables with twisted 

conductors as well.  
The formulas allow tackling the magnetic field of the two-

wire helix, as well as for the three-wire helix and  can be used 

by a software tool to model the magnetic fields generated by 

e.g. twisted-wire pairs, twisted three-phase power cables, 
triplex service cables, helical coils, etc.  
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